Cornell University - Visit www.cornell.edu Kirby Research Group at Cornell: Microfluidics and Nanofluidics : - Home College of Engineering - visit www.engr.cornell.edu Cornell University - Visit www.cornell.edu
Cornell University, College of Engineering Search Cornell
News Contact Info Login

Donations keep this resource free! Give here:

Copyright Brian J. Kirby. With questions, contact Prof. Kirby here. This material may not be distributed without the author's consent. When linking to these pages, please use the URL http://www.kirbyresearch.com/textbook.

This web posting is a draft, abridged version of the Cambridge University Press text. Follow the links to buy at Cambridge or Amazon or Powell's or Barnes and Noble. Contact Prof. Kirby here. Click here for the most recent version of the errata for the print version.

[Return to Table of Contents]


Jump To: [Kinematics] [Couette/Poiseuille Flow] [Fluid Circuits] [Mixing] [Electrodynamics] [Electroosmosis] [Potential Flow] [Stokes Flow] [Debye Layer] [Zeta Potential] [Species Transport] [Separations] [Particle Electrophoresis] [DNA] [Nanofluidics] [Induced-Charge Effects] [DEP] [Solution Chemistry]

9.6 Stern Layer [electrical double layer top]

TheGouy-Chapman theory is commonly modified by splitting the double layer into a diffuse (Gouy-Chapman) region and a condensed (Stern) region near the wall. In doing so, the condensed region near the wall plays little role directly in terms of fluid mechanics, but it does affect the double layer capacitance (see Chapter 16) as well as the relation between the chemistry at the surface and the wall potential φ0. For the moment, we omit discussion of the Stern layer, with intentions to return to in in Chapter 16. To an extent, the Stern model is simply the limit of the modified Poisson-Boltzmann models we discuss in this chapter. Both ideas are depicted schematically in Figure 9.13.


microfluidics textbook nanofluidics textbook Brian Kirby CornellFigure 9.13: Stern and modified Poisson-Boltzmann descriptions of the electrical double layer.


[Return to Table of Contents]



Jump To: [Kinematics] [Couette/Poiseuille Flow] [Fluid Circuits] [Mixing] [Electrodynamics] [Electroosmosis] [Potential Flow] [Stokes Flow] [Debye Layer] [Zeta Potential] [Species Transport] [Separations] [Particle Electrophoresis] [DNA] [Nanofluidics] [Induced-Charge Effects] [DEP] [Solution Chemistry]

Copyright Brian J. Kirby. Please contact Prof. Kirby here with questions or corrections. This material may not be distributed without the author's consent. When linking to these pages, please use the URL http://www.kirbyresearch.com/textbook.

This web posting is a draft, abridged version of the Cambridge University Press text. Follow the links to buy at Cambridge or Amazon or Powell's or Barnes and Noble. Contact Prof. Kirby here. Click here for the most recent version of the errata for the print version.


Ad revenue from these pages is used to support student research. The presence of an advertisement on these pages does not constitute an endorsement by the Kirby Research Group or Cornell University.

Donations keep this resource free! Give here: